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We shall investigate the problem of constructing the generatrix AB (Fig. 
1) of a body of revolution. which ensures minimum wave resistance of the 
body of revolution when the velocity wm of the uniform oncoming flow and 

the coordinates of the points A and B are 
given. We shall study only 
which the shock wave AC is 

be a characteristic of the 
and CD a characteristic of 

the case for 
attached. Let BC r 
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second family 
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The gas flow is determined by the equa- 
tions 

&[JZ’, cos 6 arpw sin6 
83: + ar = 

0 

8k r (p + pluu3 cOsz 6) + ir rpw2 sin 6 cos 6 = 0 (2) i 

Fig. 1. 

Here x, r are Cartesian coordinates in the meridional plane of the 
flow; I is the velocity referred to the critical flow velocity a ; 6 is 
the angle of inclination of the velocity to the flow axis x; p 1: the 
gas density referred to the density of the oncoming flow p,; p is the 

pressure referred to p_a *; 
* 

K is the adiabatic index; and $ is the stream 
function, where 

dlC, = rpw ( cos 6 dr - sin &jx) 

The solution of the formulated problem is given in [ 1 1 for the case 
rB G rA and for the flow in the region DCB for the case rB > rA if the 
functions obey the Euler equations on BC. 
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The unknown functions satisfy the following equations on BC: 

h (x sin 26 + sin 2a) + xp (1 - cos 28) = 0 

@A (a) cos a - JfGra (a) sin2 6 = 0 

I/G dr / d$ + cpA (a) sin (6 - a) = 0 

Jf~r‘+-Q I d$ + cpA (Co ]h cos (6 - a) + p sin (8 - a)] = 0 

(4) 

Here A is a constant and a(+) is a variable Lagrangian multiplier; a 

is the Mach angle, where p v2 sin’ a = kp 

1 x+1 --- 
x+1 I-cos2a‘ 

A (a) = (7 
2 K-l 

x-cos2a ) p a(a)= xE~o~2a If 

a = a(v), 6 = 6 ($), r = r (Q) 

We shall designate by x the value divided by 217 of the wave resistance 
of the body of revolution with the generatrix AB. The quantity x is ex- 
pressed with the aid of Equation (2) as a contour integral along AC and 
BC. Subsequently we shall investigate + as a function of the angle of 
inclination of the shock-wave to the x-axis, which we shall designate by 

a($_). 

In searching for the contour AB the following variational problem 
ariSeS. For the'giVSn COnStSntS v_,, rA, rB# X= wB - rA find the function 

u($) which realizes the extremum of the function 

+ &j--a(a)[oos29-isinasin(B.--a) ])dQ (5) 

under the isoperimetric condition 

g, (5) A (a) cos (8 - a) 
3 

d$ (6) 

for the conditions (4) which relate the functions a, 6 , r, ,u with the 

unknown function (I and for the well-known relations at the shock 

aC = a (a& 6, = 6 (q), 2qc = WC0 rc2 

The statement of the problem considered, with the requirement that the 
first two equalities be satisfied, is not, of course, the only one pos- 
sible. Continuous functions o($) which satisfy the properties [ 2 1 of 
solutions of the system of equations (1) to (3) are possible. 

We note that [3 1 is devoted to this same problem. 

The formulated problem is degenerate. Nevertheless, we shall attempt 
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to solve it by the methods of classical variational calculus. We shall 
introduce the new independent variable z through the formula I’ = 2w_ $. 
For determining the functions a(z), 6 (2). u(z), r(z). CL(z) for zA QZ dZc 

we obtain the following system of Eulerian equations: 

dp h -= 
d? 

f n 
zm rpo’ sin2 J = O 

1 2 3 4 SM + p sin (6 - cl)] sin2 6 sin2 6 = h2 COS Ci 

Fig. 2. 

(7) 

(8) 

(9) 

(IO) 

(11) 

The functions a, 6, u, r, p must satisfy the isoperimetric condition 
(6), the boundary conditions 

UC = U (C+), 6, = 6 (a& zc = wm rC’ r twm ‘A) = 'B (12) 

where rB is a given quantity, and the tranversality condition at z = ZC 

x+1 -((w,+ ++w[ 2x cos6-_sinasin(6-a) + 1 
+n[$jj+v;r __ cp(~)A(cl)COS(6 - a) 1 + 
+p ,2&&r [ __ v(r5)A(a) sin(6 - a) 

I 
= 0 

Condition (13)) as S.N. Eliseev and B.M. Kiselev have shown, is satis- 
fied as a result of the relations at the shock-wave and the first two 
equations of (4). 

Four arbitrary quantities occur in determining the functions: the 
differential equations (7) and (8) give rise to two arbitrary quantities 
and, in addition, the quantities x and zc are arbitrary. Conditions (6) 
and (12) give five relationships. 

Thus the formulated variational problem, generally speaking, does not 
have a solution in the classical sense. However, for certain special re- 
lations of the quantities Q,, rA : X, rB : X such a solution is possible. 
We shall find these special relationships [4 I. To do this we shall elim- 
inate the quantities x and ~1 from Equations (9) to (11); as a result we 
obtain 
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A (a) cp,’ (a) (sin 2u + x sin 26) sin (I? - a) $ 

+ 2x sin2 8 
r 

z’p~~~in2 Q -- A (u) vo’ (0) cos (fk - a) 1 = 0 (14 ) 

A solution then is found when Equation (14) is satisfied at z = zC 
as a result of the relations at the shock wave. 

We shall mentally substitute in Equation (14) the expression for zC 

at the shock wave zC = wborC and the functions ~(a,) and 6(aC) which ex- 

press the relations at the shock-wave. Then we obtain the equation E (tp,, 

uc) = 0. The quantity w_ is a parameter in the equation E = 0. 

The roots of the equation E = 0 are presented in Fig. 2, in which the 

quantity Moo, the Mach number of the oncoming flow, is plotted along the 

abscissa instead of We. One of the roots of the equation 6 = 0 is 

cc = arc sin M 
co 

(line ab). This root corresponds to the case for which rB g rA and the 
shock-wave AC degenerates into a characteristic of the oncoming flow. The 
line ag denotes those values of uC for which sonic velocity is attained 

behind the shock-wave. For greater values of uc the velocities become 
subsonic behind the shock-wave, and the theory under consideration is not 
applicable in this region. Finally, the lines ef and cd give two more 
roots of the equation t = 0. 

Let wm be fixed. We shall take a uC which is a root of the equation 
E = 0 and, making use of the arbitrariness in determining the scale, we 
shall assign a certain value to rC We shall calculate #uC) with the 
aid of the relations at the shock-wave and &‘(a$. We shall then find 

UC’ Q* zC from the first equations of (12), x from Equation (10) and 
p(z,-$ from Equation (9). This gives the initial conditions at L = zC for 
integrating the system of equations (7) to (11). 

We shall integrate Equations (7) to (11) from z = zC to some z = z 

such that z < 2~ and the velocity behind the shock-wave is equal to 
* 

sonic veloclity for ~(2 ). 
l 

Making use of the equality 

1 z 
2=- 

WC0 s cot cdz, r+- 
Z=Z* 

co 

at the shock-wave and the equality 
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on the characteristic BC. we shall construct the shock wave AC and the 
characteristic of the second family BC (Fig. 1). 

0 lL? x 
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Fig. 3. 

The flow, which is determined by the data given on ACB. can be found 
in the following way. The solution of the Cauchy problem for Equations 
(1) to (3) with the data given on AC permits the characteristic of the 
first family CD to be found, where tD = zA. The known characteristics CD 

and BC determine the solution of Equations (1) to (31, for example, with- 
in the triangle ABC. 

All streamlines (lines of z = const OF G= const) of the flow in the 
triangle ABC give the desired profiles. This means that if. for example, 

the line y(EF) is a streamline of the constructed flow, then of all the 
generatrices of bodies of revolution (at least of those near the line y) 
which connect the points E and F the line y gives precisely the least re- 
sistance. This assertion is valid because the Eulerian equations are 

satisfied for tE G z G zC and all of the corresponding boundary conditions 

are satisfied for E = zc. i.e. for the profile EF all of the necessary 
extremum conditions are satisfied. 
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~fco Body 

125 

2,5 

2,75 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 

- 

r* : x 

- 

- 

‘B : x CX 

- 

1.8796 2.0895 0.0818 
2.7412 2.9387 0.0547 
4.4709 4.6579 0.0325 
9.6699 9.8478 0.0146 

0.1121 o-4433 0.2495 
0.2762 0.5590 0.1934 
0.5904 0.8406 0.1267 
1.5492 1.7754 0.0587 

0.5531 1.0371 0.3881 
0.8370 1.2872 0.3029 
1.4257 1.8475 0.2067 
3.0888 3.4871 0.1078 

-_ 

- 

TABLE 

MC0 

3.0 

4.0 

5.0 

- 

1 

- 

Body 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

‘A : x rg: x cx 

1.0377 1.6009 0.3990 
1.5157 2.0485 0.3022 
2.4721 2.9805 0.2035 
5.3340 5.8215 0.1026 

2.5188 3.2635 0.3907 

3.1935 3.9190 0.3191 

4.2947 5.0035 0.2463 

6.3790 7.0727 0.1722 

3.3457 4.1783 0.3864 

4.2531 5.0674 0.3135 

5.7681 6.5663 0.2391 

8.7588 9.5422 0.1629 

- 

The great number of streamlines of such a flow exhaust all the special 
solutions of the desired form since any other choice of initial data at 
z= Z C violates the boundary conditions (12) and (13) or leads to non- 
fulfillment of Equations (9) to (11). 

In Fig. 3 are presented examples of calculations for various A!,. Shock- 
wave AC. characteristics of the first family CD and of the second family 
BC are shown. Some generatrices of bodies of revolution which have minimum 
resistance are presented. In the table are shown the geometrical charac- 
teristics of the points A and B and the resistance coefficients C, re- 
ferred t0 the area srg’. 

The author wishes to express his deep gratitude to L.V. Papandin who 
prepared the program for the electronic computer and carried out all of 
the calculations. 
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