ON A CLASS OF BODIES OF REVOLUTION WITH MINIMUM WAVE RESISTANCE

(OB ODNOM KLASSE TEL VRASHCHENIIA S MINIMAL'NYM VOLNOVYM SOPROTIVLENIEM)

PMM Vol.24, No.5, 1960, pp. 923-926
Iu. D. SHMYGLEVSKII. (Moscow)
(Received 16 June 1960)

We shall investigate the problem of constructing the generatrix $A B$ (Fig. 1) of a body of revolution, which ensures minimum wave resistance of the body of revolution when the velocity w_{∞} of the uniform oncoming flow and the coordinates of the points A and B are given. We shall study only the case for which the shock wave $A C$ is attached. Let $B C$ be a characteristic of the second family and $C D$ a characteristic of the first family.

The gas flow is determined by the equations

$$
\begin{gather*}
\frac{\partial r \rho w \cos \vartheta}{\partial x}+\frac{\partial r \rho w \sin \vartheta}{\partial r}=0 \tag{1}\\
\frac{\partial}{\partial x} r\left(p+\rho w^{2} \cos ^{2} \vartheta\right)+\frac{\partial}{\partial r} r \rho w^{2} \sin \vartheta \cos \vartheta=0 \tag{2}\\
\frac{w^{2}}{2}+\frac{x}{x-1} \frac{p}{\rho}=\frac{1}{2} \frac{x+1}{x-1}, \frac{p}{\rho^{x}}=\varphi^{x-1}(\psi) \tag{3}
\end{gather*}
$$

Fig. 1.

Here x, r are Cartesian coordinates in the meridional plane of the flow; w is the velocity referred to the critical flow velocity $a ; \mathcal{Y}$ is the angle of inclination of the velocity to the flow axis $x ; \rho$ is the gas density referred to the density of the oncoming flow $\rho_{\infty} ; p$ is the pressure referred to $\rho_{\infty} a_{*}{ }^{2} ; \kappa$ is the adiabatic index; and ψ is the stream function, where

$$
d \psi=r \rho w(\cos \vartheta d r-\sin \vartheta d x)
$$

The solution of the formulated problem is given in [1] for the case $r_{B} \leqslant r_{A}$ and for the flow in the region $D C B$ for the case $r_{B}>r_{A}$ if the functions obey the Euler equations on $B C$.

The unknown functions satisfy the following equations on $B C$:

$$
\begin{gather*}
\lambda(x \sin 2 \vartheta+\sin 2 \alpha)+x \mu(1-\cos 2 \vartheta)=0 \\
\lambda \varphi A(\alpha) \cos \alpha-\sqrt{x} r a(\alpha) \sin ^{2} \vartheta=0 \tag{4}\\
\sqrt{x r} d r / d \psi+\varphi A(\alpha) \sin (\vartheta-\alpha)=0 \\
\sqrt{x} r^{2} d \mu / d \psi+\varphi A(\alpha)[\lambda \cos (\vartheta-\alpha)+\mu \sin (\vartheta-\alpha)]=0
\end{gather*}
$$

Here λ is a constant and $\mu(\psi)$ is a variable Lagrangian multiplier; a is the Mach angle, where $\rho v^{2} \sin ^{2} a=k p$

$$
\begin{gathered}
A(\alpha)=\left(\frac{x+1}{2 x} \frac{1-\cos 2 \alpha}{x-\cos 2 \alpha}\right)^{-\frac{1}{2} \frac{x+1}{x-1}}, \quad a(\alpha)-\sqrt{\frac{x+1}{x-\cos 2 \alpha}} \\
\alpha=\alpha(\psi), \quad \vartheta=\vartheta(\psi), \quad r=r(\psi)
\end{gathered}
$$

We shall designate by χ the value divided by 2π of the wave resistance of the body of revolution with the generatrix $A B$. The quantity χ is expressed with the aid of Equation (2) as a contour integral along $A C$ and $B C$. Subsequently we shall investigate ϕ as a function of the angle of inclination of the shock-wave to the x-axis, which we shall designate by $\sigma(\psi)$.

In searching for the contour $A B$ the following variational problem arises. For the given constants $w_{\infty}, r_{A}, r_{B}, X=x_{B}-x_{A}$ find the function $\sigma(\psi)$ which realizes the extremum of the function

$$
\begin{equation*}
\chi=\int_{\psi=\psi_{A}}^{\psi C}\left\{\frac{x+1}{2 x}\left(w_{\infty}+\frac{1}{w_{\infty}}\right)-\alpha(\alpha)\left[\cos \vartheta-\frac{1}{x} \sin \alpha \sin (\vartheta-\alpha)\right]\right\} d \psi \tag{5}
\end{equation*}
$$

under the isoperimetric condition

$$
\begin{equation*}
X=\int_{\psi=\psi_{A}}^{\psi C}\left[\frac{\cot \sigma}{\sqrt{2 w_{\infty} \psi}}+\frac{1}{\sqrt{\chi} r} \varphi(\sigma) A(\alpha) \cos (\vartheta-\alpha)\right] d \psi \tag{6}
\end{equation*}
$$

for the conditions (4) which relate the functions $\alpha, \vartheta, r, \mu$ with the unknown function σ and for the well-known relations at the shock

$$
\alpha_{C}=\alpha\left(\sigma_{C}\right), \quad \vartheta_{C}=\vartheta\left(\sigma_{C}\right), \quad 2 \psi_{C}=w_{\infty} r_{C}^{2}
$$

The statement of the problem considered, with the requirement that the first two equalities be satisfied, is not, of course, the only one possible. Continuous functions $\sigma(\psi)$ which satisfy the properties [2] of solutions of the system of equations (1) to (3) are possible.

We note that [3] is devoted to this same problem.
The formulated problem is degenerate. Nevertheless, we shall attempt
to solve it by the methods of classical variational calculus. We shall introduce the new independent variable z through the formula $z^{2}=2 w_{\infty} \psi$. For determining the functions $a(z), \vartheta(z), \sigma(z), r(z), \mu(z)$ for $z_{A} \leqslant z \leqslant z_{C}$ we obtain the following system of Eulerian equations:

$$
\begin{gather*}
\frac{d \mu}{d z}=\frac{\lambda}{w_{\infty} r \varphi_{\sigma}{ }^{\prime} \sin ^{2} \varsigma}=0 \quad\left(\varphi_{\sigma}^{\prime}=\frac{1}{\varphi} \frac{\partial \varphi}{\partial \sigma}\right) \tag{7}\\
\frac{d r}{d z}+\frac{\lambda}{w_{\infty} \varphi_{\sigma}{ }^{\prime}[\lambda \cot (\vartheta-\alpha)+\mu] \sin ^{2} \sigma}=0 \tag{8}\\
\lambda(x \sin 2 \vartheta+\sin 2 \alpha)+x \mu(1-\cos 2 \vartheta)=0 \tag{9}\\
\sqrt{x a(\alpha) r \sin ^{2} \vartheta=\lambda A(\alpha) \varphi \cos \alpha} \tag{10}\\
\varphi_{\sigma}^{\prime} z a(\alpha)[\lambda \cos (\vartheta-\alpha)+ \\
+\mu \sin (\vartheta-\alpha)] \sin ^{2} \sigma \sin ^{2} \vartheta=\lambda^{2} \cos \alpha \tag{11}
\end{gather*}
$$

Fig. 2.

The functions $a, \forall, \sigma, r, \mu$ must satisfy the isoperimetric condition (6), the boundary conditions

$$
\begin{equation*}
\alpha_{C}=\alpha\left(\sigma_{C}\right), \vartheta_{C}=\vartheta\left(\sigma_{C}\right), z_{C}=w_{\infty} r_{C}, r\left(w_{\infty} r_{A}\right)=r_{B} \tag{12}
\end{equation*}
$$

where r_{B} is a given quantity, and the tranversality condition at $z={ }^{z} C$

$$
\begin{align*}
& \frac{x+1}{2 x}\left(w_{\infty}+\frac{1}{w_{\infty}}\right)-a(\alpha)\left[\cos \vartheta-\frac{1}{x} \sin \alpha \sin (\vartheta-\alpha)\right]+ \\
& \quad+\lambda\left[\frac{\cot \sigma}{\sqrt{2 w_{\infty} \psi}}+\frac{1}{\sqrt{x} r} \varphi(\sigma) A(\alpha) \cos (\vartheta-\alpha)\right]+ \\
& \quad+\mu\left[\frac{1}{\sqrt{2 w_{\infty} \psi}}-\frac{1}{\sqrt{x r}} \varphi(\sigma) A(\alpha) \sin (\vartheta-\alpha)\right]=0 \tag{13}
\end{align*}
$$

Condition (13), as S.N. Eliseev and B. M. Kiselev have shown, is satisfied as a result of the relations at the shock-wave and the first two equations of (4).

Four arbitrary quantities occur in determining the functions: the differential equations (7) and (8) give rise to two arbitrary quantities and, in addition, the quantities λ and z_{C} are arbitrary. Conditions (6) and (12) give five relationships.

Thus the formulated variational problem, generally speaking, does not have a solution in the classical sense. However, for certain special relations of the quantities $w_{\infty}, r_{A}: X, r_{B}: X$ such a solution is possible. We shall find these special relationships [4]. To do this we shall eliminate the quantities λ and μ from Equations (9) to (11); as a result we obtain

$$
\begin{gather*}
A(\alpha) \varphi_{\sigma}^{\prime}(\sigma)(\sin 2 \alpha+\varkappa \sin 2 \vartheta) \sin (\vartheta-\alpha)+ \\
+2 \varkappa \sin ^{2} \vartheta\left[\frac{\sqrt{\varkappa} r}{z \varphi(\sigma) \sin ^{2} \sigma}-A(\alpha) \varphi_{\sigma}^{\prime}(\sigma) \cos (\vartheta-\alpha)\right]-0 \tag{14}
\end{gather*}
$$

A solution then is found when Equation (14) is satisfied at $z={ }^{z} C$ as a result of the relations at the shock wave.

We shall mentally substitute in Equation (14) the expression for ${ }^{z} C$ at the shock wave $z_{C}=w_{\infty} r_{C}$ and the functions $a\left(\sigma_{C}\right)$ and $\vartheta\left(\sigma_{C}\right)$ which express the relations at the shock-wave. Then we obtain the equation $\epsilon\left(w_{\infty}\right.$, $\left.\sigma_{C}\right)=0$. The quantity w_{∞} is a parameter in the equation $\epsilon=0$.

The roots of the equation $\epsilon=0$ are presented in Fig. 2, in which the quantity M_{∞}, the Mach number of the oncoming flow, is plotted along the abscissa instead of w_{∞}. One of the roots of the equation $\epsilon=0$ is

$$
\sigma_{C}=\arcsin \frac{1}{M_{\infty}}
$$

(line $a b$). This root corresponds to the case for which $r_{B} \leqslant r_{A}$ and the shock-wave $A C$ degenerates into a characteristic of the oncoming flow. The line ag denotes those values of σ_{C} for which sonic velocity is attained behind the shock-wave. For greater values of σ_{C} the velocities become subsonic behind the shock-wave, and the theory under consideration is not applicable in this region. Finally, the lines ef and cd give two more roots of the equation $\epsilon=0$.

Let w_{∞} befixed. We shall take a σ_{C} which is a root of the equation $\epsilon=0$ and, making use of the arbitrariness in determining the scale, we shall assign a certain value to r_{C}. We shall calculate $\phi\left(\sigma_{C}\right)$ with the ald of the relations at the shock-wave and $\phi_{\sigma}^{\prime}\left(\sigma_{C}\right)$. We shall then find $a_{C}{ }^{\prime} \mathcal{C}^{\prime} z_{C}$ from the first equations of (12), λ from Equation (10) and $\mu\left(z_{C}\right)$ from Equation (9). This gives the initial conditions at $z=z_{C}$ for integrating the system of equations (7) to (11).

We shall integrate Equations (7) to (11) from $z={ }^{2} C$ to some $z=z_{*}$ such that $z_{*}<x_{C}$ and the velocity behind the shock-wave is equal to sonic velocity for $\sigma\left(z_{*}\right)$. Making use of the equality

$$
x=\frac{1}{w_{\infty}} \int_{z=z_{*}}^{z} \cot \sigma d z, \quad r=\frac{z}{w_{\infty}}
$$

at the shock-wave and the equality

$$
x=x_{C}-\int_{z=z_{C}}^{z} \frac{\lambda d z}{w_{\infty} \varphi_{\sigma}^{\prime}[\lambda+\mu \tan (\vartheta-\alpha)] \sin ^{2} \sigma}
$$

on the characteristic $B C$, we shall construct the shock wave $A C$ and the characteristic of the second family $B C$ (Fig. 1).

Fig. 3.
The flow, which is determined by the data given on $A C B$, can be found in the following way. The solution of the Cauchy problem for Equations (1) to (3) with the data given on $A C$ permits the characteristic of the first family $C D$ to be found, where $z_{D}=z_{A}$. The known characteristics $C D$ and $B C$ determine the solution of Equations (1) to (3), for example, within the triangle $A B C$.

All streamlines (lines of $z=$ const or $\psi=$ const) of the flow in the triangle $A B C$ give the desired profiles. This means that if, for example, the line $\gamma(E F)$ is a streamline of the constructed flow, then of all the generatrices of bodies of revolution (at least of those near the line γ) which connect the points E and F the line γ gives precisely the least resistance. This assertion is valid because the Eulerian equations are satisfied for $z_{E} \leqslant z \leqslant z_{C}$ and all of the corresponding boundary conditions are satisfied for $z={ }^{z} C$, i.e. for the profile $E F$ all of the necessary extremum conditions are satisfied.

TABLE

M_{∞}	Body	$r_{\text {A }}: X$	$r_{B}: X$	c_{x}	M_{∞}	Body	$r_{A}: X$	$r_{B}: X$	c_{x}
1,5	1	1.8796	2.0895	0.0818	3.0	1	1.0377	1.6009	0.3990
	2	2.7412	2.9387	0.0547		2	1.5157	2.0485	0.3022
	3	4.4709	4.6579	0.0325		3	2.4721	2.9805	0.2035
	4	9.6699	9.8478	0.0146		4	5.3340	5.8215	0.1026
2,5	1	0.1121	0.4433	0.2495	4.0	1	2.5188	3.2635	0.3907
	2	0.2762	0.5590	0.1934		2	3.1935	3.9190	0.3191
	3	0.5904	0.8406	0.1267		3	4.2947	5.0035	0.2463
	4	1.5492	1.7754	0.0587		4	6.3790	7.0727	0.1722
2,75	1	0.5531	1.0371	0.3881	5.0	1	3.3457	4.1783	0.3864
	2	0.8370	1.2872	0.3029		2	4.2531	5.0674	0.3135
	3	1.4257	1.8475	0.2067		3	5.7681	6.5663	0.2391
	4	3.0888	3.4871	0.1078		4	8.7588	9.5422	0.1629

The great number of streamlines of such a flow exhaust all the special solutions of the desired form since any other choice of initial data at $z=z_{C}$ violates the boundary conditions (12) and (13) or leads to nonfulfillment of Equations (9) to (11).

In Fig. 3 are presented examples of calculations for various M_{∞}. Shockwave $A C$, characteristics of the first family $C D$ and of the second family $B C$ are shown. Some generatrices of bodies of revolution which have minimum resistance are presented. In the table are shown the geometrical characteristics of the points A and B and the resistance coefficients C_{x} referred to the area $\pi r_{B}{ }^{2}$.

The author wishes to express his deep gratitude to L. V. Papandin who prepared the program for the electronic computer and carried out all of the calculations.

BIBLIOGRAPHY

1. Shmyglevskii, Iu. D., Nekotorye variatsionnye zadachi gazovoi dinamiki osesimmetrichnykh sverkhzvukovykh techenii (Some variational problems of the gasdynamics of axisymmetric supersonic flows). PMM Vol. 21, No. 2, 1957.
2. Shmyglevskii. Iu. D. . O nekotorykh svoistvakh osesimmetrichnykh sverkhzvukovykh techenii gaza (On some properties of axisymmetric supersonic gas flows). Dokl. Akad. Nauk SSSR Vol. 122, No. 5, 1958.
3. Kostychev, G.I., O forme tel s minimal'nym volnovym soprotivleniem (On the form of bodies with minimum wave resistance). Izv, vyssh. uchebn. zabedenii MVO, seriia aviats. tekhn. No. 2, 1958.
4. Shmyglevskii, Iu.D., O sverkhzvukovykh profiliakh, imeiushchikh minimal' noe soprotivlenie (on supersonic profiles which have minimum resistance). PMM Vol. 22, No. 2, 1958.
